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Abstract. Expansion of a Lie algebra is the opposite process to contraction. Starting from a
Lie algebra, the expansion process goes to another algebra, which is non-isomorphic and less
Abelian. We propose an expansion method based on the Casimir invariants of the initial and
expanded algebras and where the free parameters involved in the expansion are the curvatures of
their associated homogeneous spaces. This method is applied for expansions within the family of
Lie algebras of three-dimensional spaces and (2 + 1)D kinematical algebras. We show that these
expansions are classed into two types. The first type makes the curvature of space or spacetime
different from zero (i.e. it introduces a space or universe radius), while the other has a similar
interpretation for the curvature of the space of worldlines, which is non-positive and equal to−1/c2

in the kinematical algebras. We obtain expansions which go from Galilei to either Newton–Hooke
or Poincaŕe algebras, and from these to de Sitter algebras, as well as some other examples.

1. Introduction

The concept of contraction of Lie algebras and groups arose in the study of the limit from
relativistic to classical mechanics. As is well known, when the velocity of light goes to infinity
the Poincaŕe group leads formally to the Galilei one. This idea, proposed and studied by
Inönü and Wigner [1] also appeared in Segal [2] and was later developed by Saletan [3]. More
recently, other approaches to the study of contractions, such as the graded contraction theory
[4, 5] and the generalized Inönü–Wigner contractions [6] have been introduced. In general,
a Lie algebra contraction starts from some Lie algebra and makes some non-zero structure
constants vanish, giving rise to another Lie algebra which is more Abelian than the original
one. The theory of graded contractions includes Inönü–Wigner contractions but goes beyond
that and, for instance, may also relate different real forms of semisimple Lie algebras.

The opposite process of a contraction limit is generically, and rather imprecisely called
anexpansion. One specific way to implement the expansion idea is to replace the generators
of the initial algebra by some functions of them; if the new generators close a Lie algebra then
we have obtained an expansion of the original algebra [7]. This kind of process produces,
so to speak, some non-zero structure constants which were previously equal to zero, in such
a manner that the final algebra islessAbelian than the initial one. In this approach usually
the expanded algebra is realized as a subalgebra within an irreducible representation of the
universal enveloping algebra for the initial algebra. We remark that in the literature algebra
expansions are also called algebra deformations and indeed this kind of process can be seen as
a ‘classical deformation’. However, we will use the former name in order to avoid confusion
with quantum algebra deformations.

0305-4470/99/203743+12$19.50 © 1999 IOP Publishing Ltd 3743
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Unlike the study of Lie algebra contractions, the theory of expansions has not been
systematized. Known expansions are those going from the inhomogeneous pseudo-orthogonal
algebrasiso(p, q) to the semisimple onesso(p + 1, q) and similar expansions for the unitary
algebras fromiu(p, q) to u(p + 1, q) [7, 8]. On the other hand, a different procedure which
allows one to perform expansionstqp(so(p) ⊕ so(q)) → so(p, q) or tqp(u(p) ⊕ u(q)) →
u(p, q) as well as their symplectic analogous has been introduced in [9] (see also references
therein).

The set of quasi-orthogonal algebras [10] appears as a natural frame for developing a study
of expansions, with a good balance between generality and suitability as an adapted tool for
specific purposes. This set of algebras includes all pseudo-orthogonal algebras as well as a
large number of graded contractions—relative to a given maximal fine grading—of the simple
(pseudo)-orthogonal algebras. These contractions are, however, not the most general ones, but
still somehow keep the properties linked to simplicity, an important fact which makes these
algebras a natural subset among all graded contractions of the orthogonal algebras. When
turning to expansions, these remarks should be reversed: it is true that in principleany Lie
algebra can be realized in the universal enveloping algebra of a direct product of Heisenberg
algebras, as Schwinger realizations for the simple cases clearly show [11]. However, as
in the most general set of contractions, it seems pertinent to restrict oneself to the study of
expansions amongst quasi-simple algebras, which should reverse the contractions found in this
family. For instance we would find, amongst many other expansions, the ones concerning the
kinematical algebras [12]: expansions going from Newton–Hooke to de Sitter algebras, from
Galilei to Newton–Hooke or to Poincaré algebras, further to expansions from Poincaré to the
de Sitter or from Galilei to the two Newton–Hooke algebras. Note that the known transitions
iso(p, q)→ so(p+1, q)mentioned above include only expansions from Poincaré to de Sitter
algebras, but not for the remaining quoted cases. As far as we know, specific possibilities for
such general expansion schemes have not been studied in some generality; see, however, [13]
for the(1 + 1)-dimensional case.

The aim of this paper is to provide a simple new expansion procedure and to apply it to
the manageable but non-trivial case of the Lie algebras of motion groups in three-dimensional
(3D) spaces. These expansions would include all the expansions of kinematical algebras in
(2 + 1) dimensions and a few more, non-kinematical examples. Thus in the next section we
present the structure of the main kinematical algebras which include three ‘absolute time’ cases
(two Newton–Hooke and Galilei) and three ‘relative time’ ones (two de Sitter and Poincaré).
In section 3 we propose an expansion method which is based in the Casimir invariants of
the two Lie algebras involved in the expansion. For instance, the initial Lie algebra may
be related to a spacetime of curvature zero, while the expanded algebra corresponds to an
homogeneous space with constant non-zero curvature; from this point of view we will see how
the expansion process introduces the curvature as afreeparameter. The remaining sections of
the paper are devoted to analysing in detail all the possible kinematical expansions cast into
two types: ‘spacetime’ expansions which starting from the algebra of a flat spacetime will
introduce curvature in spacetime, and ‘speedspace’ expansions which recover a ‘relative time’
spacetime with a finite relativistic constantc (equal to the velocity of the light), starting from
the algebra of an ‘absolute time’ (and hencec = ∞) spacetime.

2. The (2 + 1)-dimensional kinematical algebras

Let us consider an homogeneous spacetime with curvatureκ and either of ‘absolute time’ type
(formally described by lettingc→∞) or ‘relative time’ one, with relativistic constantc. Let
H , Pi , Ki (i = 1, 2) andJ the generators of time translations, space translations, boosts and
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spatial rotations, respectively. The structure of the kinematical algebras we are going to deal
with can be written collectively in terms of two real coefficientsω1 = κ andω2 = −1/c2 as
follows:

[J, Pi ] = εijPj [J,Ki ] = εijKj [J,H ] = 0
[P1, P2] = ω1ω2J [K1,K2] = ω2J [Pi,Kj ] = δijω2H

[H,Pi ] = ω1Ki [H,Ki ] = −Pi i, j = 1, 2
(2.1)

whereεij is a skew-symmetric tensor such thatε12 = 1, ε21 = −1 andε11 = ε22 = 0. The
main reason to introduceω2 instead ofc is to allowpositivevalues, whenever (2.1) does not
have a kinematical interpretation, but nevertheless makes perfect sense as a Lie algebra. Thus
each coefficientωi can take positive, negative or zero values, and the commutators (2.1) give
rise to nine Lie algebras, which should be considered as different in this context. For each such
algebra symmetric homogeneous space can be built up by taking the quotient by the subalgebra
generated byKi, J . These Lie algebras as well as the homogeneous spaces are displayed in
table 1 according to the values of the pair(ω1, ω2).

Table 1. 3D isometry Lie algebras and their homogeneous spaces, including(2 + 1)D kinematical
algebras.

so(4) iso(3) so(3, 1)
(+,+) −→ (0,+) ←− (−,+)
3D Elliptic space 3D Euclidean space 3D Hyperbolic space

↓ ↓ ↓
t4(so(2)⊕ so(2)) iiso(2) t4(so(2)⊕ so(1, 1))
(+, 0) −→ (0, 0) ←− (−, 0)
Oscillating NH Galilean Expanding NH
(2 + 1)D spacetime (2 + 1)D spacetime (2 + 1)D spacetime

↑ ↑ ↑
so(2, 2) iso(2, 1) so(3, 1)
(+,−) −→ (0,−) ←− (−,−)
Anti-de Sitter Minkowskian de Sitter
(2 + 1)D spacetime (2 + 1)D spacetime (2 + 1)D spacetime

The value ofω2 can be thought of as related to the signature of the metric in the
homogeneous space, which is definite positive forω2 > 0 and indefinite (hence Lorentzian
type in this 3D case) forω2 < 0, with the Galilean degenerate metric which corresponds to
‘absolute time’ in the intermediate caseω2 = 0. Therefore, the three algebras of the first row
with ω2 > 0 do not allow aliteral interpretation in terms of a spacetime, and instead they
are the Lie algebras of the motion groups of three-dimensionalRiemannianspaces of constant
curvatureω1 = κ. Kinematical algebras [12] arise wheneverω2 6 0, that is, when the boosts
generate non-compact subgroups. The coefficientω1 is the universe curvatureκ; the so-called
universe radiusR is related withω1 by eitherω1 = 1/R2 or ω1 = −1/R2. The relativistic
constantc plays a role analogous toR whenω2 is negative, ω2 = −1/c2. The three algebras
of the second row (NH means Newton–Hooke) correspond to ‘absolute time’ spacetimes with
ω2 = 0 or c = ∞, while those of the third row are associated to ‘relative time’ spacetimes
with ω2 < 0 and a finite value forc.

These Lie algebras have two Casimir invariants given by

C1 = ω2H
2 + P 2

1 + P 2
2 + ω1(K

2
1 +K2

2) + ω1ω2J
2

C2 = ω2HJ − P1K2 + P2K1

(2.2)
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which in the kinematical casesω2 6 0 correspond to the energy and angular momentum of a
particle in the free kinematics of the spacetime corresponding to(ω1, ω2), respectively. When
ω2 > 0 these expressions for the Casimirs cannot of course be interpreted in physical terms as
energy and angular momentum.

We recall that each Lie algebrag of table 1 admits three involutive automorphisms, which
we will name according to their natural interpretation in the kinematical case: parityP, time-
reversalT and their productPT defined by [12]

P: (H, Pi,Ki, J )→ (H,−Pi,−Ki, J )
T : (H, Pi,Ki, J )→ (−H,Pi,−Ki, J )
PT : (H, Pi,Ki, J )→ (−H,−Pi,Ki, J ).

(2.3)

These mappings clearly leave the Lie brackets (2.1) invariant. For further purposes we consider
direct sum decompositions ofg into anti-invariant and invariant generators under the action of
the involutionsPT andP:
PT : g = p(1) ⊕ h(1) p(1) = 〈H,Pi〉 h(1) = 〈Ki, J 〉
P: g = p(2) ⊕ h(2) p(2) = 〈Pi,Ki〉 h(2) = 〈H 〉 ⊕ 〈J 〉. (2.4)

Both are Cartan decompositions, verifying

[h(i), h(i)] ⊂ h(i) [h(i), p(i)] ⊂ p(i) [p(i), p(i)] ⊂ h(i). (2.5)

Note thath(i) is always a Lie subalgebra ofg, whilep(i) is only a subalgebra wheneverωi = 0
(i = 1, 2), and in that case it is Abelian: [p(i), p(i)] = 0. Henceg is the Lie algebra of the
motion groupG of the following symmetrical homogeneous spaces:

S(1) = G/H(1) dim(S(1)) = 3 curv(S(1)) = ω1

S(2) = G/H(2) dim(S(2)) = 4 curv(S(2)) = ω2
(2.6)

whereH(1), H(2), the subgroups whose corresponding Lie algebras areh(1), h(2), are the
isotropy subgroups of a point/event and a (timelike) line, respectively. Therefore,S(1) is
identified either to a three-dimensional space of points or to a(2 + 1)-dimensional spacetime,
in both cases with constant curvatureω1. Likewise,S(2) is a four-dimensional space, whose
‘points’ can be identified with (timelike) lines in the former space; this has a natural connection
and metric structure, whose curvature turns out to be ‘constant’ (in some suitable rank-two
sense which is compatible with the fact that this space always contains a flat submanifold
whose dimension equals to the rank) and equalsω2.

To take the constantω1 (respectivelyω2) equal to zero is equivalent to perform an Inönü–
Wigner contraction [1] starting from some algebra whereω1 6= 0 (respectively,ω2 6= 0).
In this contraction, the invariant subalgebra ish(1) (respectively,h(2)), while the remaining
generators are multiplied by a parameterε; the contracted algebra appears as the limitε→ 0.
If we perform this limiting procedure starting from the generic algebra (2.1) we find that a
spacetime contraction makes to vanish the curvatureω1 of S(1) (R→∞), while a speedspace
contraction makes zero the curvatureω2 of S(2) (in the kinematical casec→∞):

ω1→ 0: spacetime contraction (H, Pi,Ki, J )→ (εH, εPi,Ki, J ) ε→ 0

ω2→ 0: speedspace contraction(H, Pi,Ki, J )→ (H, εPi, εKi, J ) ε→ 0.
(2.7)

In table 1 horizontal arrows correspond to spacetime contractions and the vertical ones
to speedspace contractions. The Lie algebra expansions we are going to describe in the next
sections are somewhat the opposite process and allow us to recover these constants starting
from a contracted algebra. In geometrical terms, an expansion allows us to introduce curvature
out of a flat space.
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3. An expansion method

Let g andg′ be two Lie algebras with commutation rules given by (2.1). We suppose thatg is
a contracted algebra obtained fromg′ by making zerooneof the two constantsω1 or ω2, say
ωa, so thatg′ → g whenωa → 0, while the other constant, (sayωb) does not change. Now
we want to consider theoppositesituation: we look tog as the initial algebra, and we aim to
recoverg′, which we shall call theexpandedalgebra, starting fromg; for which we have to
introduce a non-zero value forωa in some way. In the following we explain the expansion
method we propose. The indexa will always refer to the constant which is being ‘expanded’
from a zero value to a non-zero one in the expansion process.

Let C1, C2 be the two Casimirs of the initial Lie algebrag (with ωa = 0) andC′1, C′2 those
of the final algebrag′ (with ωa 6= 0 and the same remaining constantωb asg). A glance at
the explicit expressions (2.2) clearly shows two facts: (a)Ci = C′i |ωa=0, and (b)C′i is linear in
the chosenωa. This suggests splitting each ‘expanded’ Casimir into two terms according to
the presence of the constantωa. Obviously, the term independent ofωa is just the ‘contracted’
Casimir, so these decompositions define, out of the formal expressions for the initial and the
expanded Casimirs, some elements in the universal enveloping algebra of the initial algebra as

C′1 = C1 + ωaJ1 C′2 = C2 + ωaJ2 (3.1)

whereωa does not appear in any of the termsCl , Jl (l = 1, 2). We now consider the linear
combination

J = α1J1 + α2J2 (3.2)

whereα1, α2 are two constants to be determined and we will assume we are working in the
universal enveloping algebra ofg within an irreducible representation ofg.

We define some elements in this universal enveloping algebra as the following functions
of the generatorsXk of g:

X′k :=
{
Xk if [J , Xk] = 0

[J , Xk] if [ J , Xk] 6= 0.
(3.3)

The aim is to make these elementsX′k close a Lie algebra isomorphic tog′. OnceJ is given,
the commutators ofX′k are completely determined, so that the only freedom at our disposal in
this procedure lies in the choice of the constantsαl .

The computations of commutators of the new elementsX′k can be shortcut in some cases
by use of the following result.

Proposition 1. Suppose that the initial Lie algebrag with generatorsXk has a direct sum
decomposition as a vector space asg = t ⊕ k wherek is the subalgebra determined by the
conditionk = 〈Xk | [J , Xk] = 0〉 and t is some vector subspace supplementary tok (notice
that all elements int do not commute withJ ). Suppose also that for commutators of elements
in k andt we have

[k, k] ⊂ k [k, t ] ⊂ t. (3.4)

Then the generatorsX′k defined by (3.3) for the expanded algebrag′ have the ‘same’ Lie
brackets[k′, k′] and[k′, t ′] as the initial algebrag.

The proof is trivial for [k′, k′] as the generators involved are invariant in the expansion and
they directly span the Lie subalgebrak′. For [k′, t ′] we compute a generic Lie bracket between
X′l ∈ k′ andX′m ∈ t ′:

[X′l , X
′
m] = [Xl,JXm −XmJ ] = J [Xl,Xm] − [Xl,Xm]J . (3.5)
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As [k, t ] ⊂ t , the commutator [Xl,Xm] = CnlmXn ∈ t , so that

[X′l , X
′
m] = Cnlm(JXn −XnJ ) = CnlmX′n ∈ t ′. (3.6)

We remark that the decomposition in proposition 1 is defined in a way independent to the Cartan
decompositions in (2.5), but it might coincide with them. In any case, the aim of the expansion
idea is to find the commutation relations of the Lie algebrag′ for the new generatorsX′k.
Whenever the hypotheses of proposition 1 are fulfilled, part of these commutation relations
are automatically satisfied and to find the correct expanded commutation relations we only
have to compute the brackets [t ′, t ′] and to enforce for them the corresponding commutation
relations ofg′. In this way we obtain some equations involvingαl , Cl andωa; their solutions
characterize the constantsαl . The coefficientωa (not appearing ing) is introduced in this last
step.

In the next sections we apply this method to the algebras of table 1, reversing the direction of
the contraction arrows. As we have two ‘curvatures’ we will consider two types of expansions:
spacetime expansions, which out ofω1 = 0 recoverω1, and speedspace expansions which
similarly recoverω2. In most cases the assumptions of proposition 1 will be satisfied, and
for each expansion starting fromωa = 0 we will find that initially [t, t ] = 0, and after the
expansion [t ′, t ′] ⊂ k′ due to the presence of an ‘expanded’ non-zero value forωa. It is
remarkable that in the expansion which goes from Galilei to Poincaré it will be necessary
to consider the initial Galilei algebra with a central extension; however, the procedure just
described is still valid. Actually, this fact already happens in(1 + 1) dimensions [13].

4. Spacetime expansions orω1 expansions

The purpose of this section is to discuss the expansions which starting from the algebra with
ω1 = 0 ‘introduce’ a non-zero value for the constantω1. The value ofω2 will remain unchanged
in the expansion. Some details are slightly different according to eitherω2 6= 0 orω2 = 0,
so we will present these two cases separately. When applied to the kinematical algebras,
this expansion leads from the Galilei algebra to the two Newton–Hooke ones, and from the
Poincaŕe case to the two de Sitter algebras. In the non-kinematical caseω2 > 0 the expansion
carries from 3D Euclidean algebra to either the elliptic or hyperbolic ones.

4.1. From Poincaŕe to de Sitter

We consider as initial algebras those withω1 = 0 andω2 6= 0 which are the Euclideaniso(3)
(for ω2 > 0) and the Poincaré iso(2, 1) (for ω2 < 0) algebras; they are associated with a flat
3D Euclidean space and to a relativistic flat(2 + 1)D spacetime, respectively. The Lie brackets
which due to the initial conditionωa ≡ ω1 = 0 vanish in the general commutation relations
(2.1) are

[P1, P2] = 0 [H,Pi ] = 0 (4.1)

and the two Casimirs (2.2) reduce to

C1 = ω2H
2 + P 2

1 + P 2
2 C2 = ω2HJ − P1K2 + P2K1. (4.2)

The expansion to theso(3) or so(2, 1) algebras which correspond toω1 6= 0 and the same
initial value forω2 requires replacing the three Lie brackets in (4.1) by those corresponding to
ω1 6= 0, which read

[P ′1, P
′
2] = ω1ω2J

′ [H ′, P ′i ] = ω1K
′
i . (4.3)
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We split the Casimirs of the final semisimple algebras as

C′1 = C1 + ω1J1 J1 = K2
1 +K2

2 + ω2J
2

C′2 = C2 J2 = 0.
(4.4)

Hence the linear combination (3.2) has a single term:J = α1J1. The new generators coming
from (3.3) read

K ′1 = K1 K ′2 = K2 J ′ = J
H ′ = 2α1(K1P1 +K2P2 + ω2H)

P ′1 = 2ω2α1(JP2 −K1H + P1)

P ′2 = 2ω2α1(−JP1−K2H + P2).

(4.5)

In this case, the decompositiong = t ⊕ k coincides with the Cartan decomposition
g = p(1) ⊕ h(1), and the three generators which are unchanged by the expansion close the
isotropy subalgebra of a point/eventh(1) (2.4). Taking into account (2.5) it is clear that
proposition 1 can be applied. The expansion depends on a single parameterα1, whose value (if
the expansion indeed exists) is obtained by enforcing (4.3) for the three commutators [P ′1, P

′
2],

[H ′, P ′i ]. Let us compute, for instance,

[H ′, P ′1] = 4ω2α
2
1(−ω2K1H

2 −K1P
2
1 −K1P

2
2 )

= −4ω2α
2
1K1(ω2H

2 + P 2
1 + P 2

2 ) = −4ω2α
2
1K
′
1C1. (4.6)

Note the automatic appearance of the CasimirC1; this will happen in all expansions we will
deal with. Since the commutator must be equal toω1K

′
1 we have

α2
1 = −

ω1

4ω2C1
. (4.7)

It can be checked that the two remaining Lie brackets lead to the same condition.
Note thatα1 is not strictly speaking a number, but depends on the generators of the initial

algebraonlythrough the CasimirC1. Within any irreducible representation of the initial algebra,
α1 turns into a scalar value.

According to the different values for the initial constantω2 6= 0 (note that we start from
ω1 = 0) and the possible choices of the expansion parameterα1 (i.e. of the finalω1), the
process just described leads to the algebras displayed in the diagram:

so(4) iso(3) so(3, 1)
ω2 > 0 (+,+) ←− (0,+) −→ (−,+)

Elliptic Euclidean Hyperbolic

so(2, 2) iso(2, 1) so(3, 1)
ω2 < 0 (+,−) ←− (0,−) −→ (−,−)

Anti-de Sitter Poincaŕe de Sitter

This type of expansion allows us to ‘recover’ a space of constant curvature
(elliptic/hyperbolic, or anti de Sitter/de Sitter) out of a flat space, either the 3D Euclidean
space or the(2 + 1)D Minkowskian spacetime.

4.2. From extended Galilei to Newton–Hooke

In the non-generic caseω2 = 0, we must start theω1 expansion from the degenerate Galilei
algebra. We want to keepω2 = 0 but to introduceω1 6= 0, then reaching the Newton–Hooke
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algebras. The commutators which are zero in the initial algebra but not in the expanded one
are only

[H,Pi ] = 0. (4.8)

The Galilean Casimirs read

C1 = P 2
1 + P 2

2 C2 = −P1K2 + P2K1. (4.9)

We split the Newton–Hooke invariants as

C′1 = C1 + ω1J1 J1 = K2
1 +K2

2

C′2 = C2 J2 = 0.
(4.10)

ThusJ = α1J1. Should we apply the expansion recipe blindly, from (3.3) we obtain that
H ′ = 2α1(K1P1+K2P2), all other generators being unchanged. Although proposition 1 cannot
be used in this case to shortcut computations (note that [k, t ] ⊂ k), it can be checked that the
new generators thus obtained do close a Lie algebra, which is, however,not within the set of
the algebras described in (2.1). In this case the initial Lie algebra is too much contracted (or
Abelian) to be able to act as a germ for an expansion to the Newton–Hooke algebras. However,
this problem can be circumvented in the same way as in the(1 + 1)-dimensional case [13]:
starting not from Galilei algebra itself, but from a central extension, with central generator
4 and characterized by a parameterm, the mass of a free particle. The Lie brackets of this
extended Galilei algebra are given by

[J, Pi ] = εijPj [J,Ki ] = εijKj [J,H ] = 0

[P1, P2] = 0 [K1,K2] = 0 [Pi,Kj ] = δijm4
[H,Pi ] = 0 [H,Ki ] = −Pi [4, · ] = 0.

(4.11)

We keepJ = α1(K
2
1 +K2

2) and apply again the recipe (3.3) to define the expanded generators;
due to the presence of the central extension the results found formerly change, and now we
obtain

K ′1 = K1 K ′2 = K2 J ′ = J
H ′ = 2α1(K1P1 +K2P2 +m4)

P ′1 = −2α1m4K1 P ′2 = −2α1m4K2.

(4.12)

Hence the subalgebrak unchanged by the expansion coincides withh(1), the isotropy subalgebra
of an event. In spite of the central extension, the same reasoning as proposition 1 shows that
the Lie brackets [k′, k′] and [k′, t ′] are kept in the same form as in the non-extended initial
Galilei algebra. The remaining commutators [t ′, t ′] lead to

[H ′, P ′i ] = −4α2
1m

242Ki ≡ ω1K
′
i [P ′1, P

′
2] = 0 (4.13)

and consequently

α2
1 = −

ω1

4m242
. (4.14)

This Galilean expansion recovers a non-zero curvatureω1 out of the flat Galilei spacetime,
while keepingω2 = 0 which is accompanied by the presence of ‘absolute time’, producing the
two curved ‘absolute time’ Newton–Hooke spacetimes and thereby completing the non-generic
missing middle line in the diagram of section 4.1:

t4(so(2)⊕ so(2)) iiso(1, 1) t4(so(2)⊕ so(1, 1))
ω2 = 0 (+, 0) ←− (0, 0) −→ (−, 0)

Oscillating NH Extended Galilei Expanding NH
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5. Speedspace expansions orω2 expansions

In this section, we switch roles forω1 andω2, and we discuss expansions which starting from
the algebra withω2 = 0 ‘introduce’ a non-zero value for the constantω2, the value ofω1 being
unchanged. Again some details are slightly different according to eitherω1 = 0 orω1 6= 0, so
we will study these separately. The name speedspace we give to these expansions is justified
because when applied to the kinematical algebras, these expansions lead from the Galilei
algebra to the Poincaré or to the 3D Euclidean one, while from Newton–Hooke the expansion
leads either to the two de Sitter algebras, or to the 3D elliptic and hyperbolic algebras.

5.1. From Newton–Hooke to de Sitter

We consider as the initial algebras those withω2 = 0 and a fixedω1 6= 0, that is, the Newton–
Hooke ones. There are four Lie brackets of (2.1) which are zero in the initial algebra but should
be different from zero in the expanded one:

[P1, P2] = 0 [K1,K2] = 0 [P1,K1] = 0 [P2,K2] = 0. (5.1)

The two Casimirs (2.2) are now

C1 = P 2
1 + P 2

2 + ω1(K
2
1 +K2

2) C2 = −P1K2 + P2K1. (5.2)

We decompose the two Casimir invariants of the algebras we want to reach by expansion
(isomorphic to eitherso(3) or so(2, 1)) by taking into account the expansion constantω2:

C′1 = C1 + ω2J1 J1 = H 2 + ω1J
2

C′2 = C2 + ω2J2 J2 = JH.
(5.3)

Therefore, the element (3.2) has two terms and gives rise to the new generators defined by

H ′ = H J ′ = J
P ′1 = 2ω1α1(K1H + JP2) + α2(P2H + ω1JK1)

P ′2 = 2ω1α1(K2H − JP1) + α2(−P1H + ω1JK2)

K ′1 = 2α1(−P1H + ω1JK2) + α2(K2H − JP1)

K ′2 = 2α1(−P2H − ω1JK1) + α2(−K1H − JP2).

(5.4)

In this case the decompositiong = t ⊕ k coincides with the Cartan one associated with
the involutionP, and the invariant generatorsH andJ generate the isotropy subalgebrah(2)

of a (timelike) line (2.4). This means that proposition 1 can be applied. Thus we have only to
compute the Lie brackets involving the four generatorsP ′i ,K

′
i . Let us choose, for instance,

[P ′1, P
′
2] = −4ω2

1α
2
1(2K1P2H − 2K2P1H + JP 2

1 + JP 2
2 + ω1JK

2
1 + ω1JK

2
2)

−ω1α
2
2(2K1P2H − 2K2P1H + JP 2

1 + JP 2
2 + ω1JK

2
1 + ω1JK

2
2)

−2ω1α1α2(2P
2
1H + 2P 2

2H + 2ω1K
2
1H + 2ω1K

2
2H

+4ω1JK1P2 − 4ω1JK2P1). (5.5)

We introduce in this expression the Newton–Hooke Casimirs (5.2) and we obtain

[P ′1, P
′
2] = −4ω2

1α
2
1(2C2H + JC1)− ω1α

2
2(2C2H + JC1)− 2ω1α1α2(2C1H + 4ω1JC2)

= −(8ω2
1C2α

2
1 + 2ω1C2α

2
2 + 4ω1C1α1α2)H

′ − (4ω2
1C1α

2
1 + ω1C1α

2
2 + 8ω2

1C2α1α2)J
′

(5.6)
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and by imposing (5.6) to be equal toω1ω2J
′ we obtain two quadratic equations in the constants

αl :

4ω1C1α
2
1 + C1α

2
2 + 8ω1C2α1α2 = −ω2

4ω1C2α
2
1 + C2α

2
2 + 2C1α1α2 = 0.

(5.7)

If we calculate any other Lie bracket (5.1) with the new generators (5.4) we obtain the same
equations (5.7). Moreover, we also have to compute the commutators [P ′1,K

′
2] and [P ′2,K

′
1];

they are directly zero and do not originate any relation for the constantsαl .
Hence, within an irreducible representation of the initial algebra, the Casimirs appear

replaced by their eigenvalues, and the solutions inα1 andα2 for the quadratic equations (5.7)
afford the expansions we are looking for.

These expansions which start from the Newton–Hooke algebras introduce the constantω2

in the four-dimensional spaces of linesS(2) (ω2 = −1/c2 when it is negative), thus eliminating
the ‘absolute time’ character and giving rise to the curved relativistic de Sitter algebras; they
embrace the following cases:

ω1 > 0 ω1 < 0

so(4) so(3, 1)
(+,+) (−,+)

Elliptic Hyperbolic
↑ ↑

t4(so(2)⊕ so(2)) t4(so(2)⊕ so(1, 1))
(+, 0) (−, 0)

Oscillating NH Expanding NH
↓ ↓

so(2, 2) so(3, 1)
(+,−) (−,−)

Anti-de Sitter de Sitter

5.2. From Galilei to Poincaŕe

Finally, we consider theω2 expansion starting from the Galilei algebra which has not only
ω2 = 0 but alsoω1 = 0. We want to obtain Lie algebras withω2 6= 0, but keeping the
Galilean value ofω1. The Lie brackets that we have to make different from zero read (see
equation (2.1)):

[K1,K2] = 0 [P1,K1] = 0 [P2,K2] = 0. (5.8)

By taking into account the Galilean Casimirs (4.9) we write the invariants (2.2) withω1 = 0
as

C′1 = C1 + ω2J1 J1 = H 2

C′2 = C2 + ω2J2 J2 = JH.
(5.9)

Therefore, the generators for the expanded algebras are

H ′ = H J ′ = J
P ′1 = α2P2H P ′2 = −α2P1H

K ′1 = −2α1P1H + α2(K2H − JP1)

K ′2 = −2α1P2H − α2(K1H + JP2).

(5.10)
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As in the previous expansion, we have only to compute the commutators between the generators
P ′i ,K

′
i . Enforcing the values they should have in the expanded algebra we obtain the constants

αl :

[P ′i , K
′
i ] = −α2

2(P
2
1H + P 2

2H) = −α2
2C1H ≡ ω2H

′

[K ′1,K
′
2] = −α2

2(2K1P2H − 2K2P1H + JP 2
1 + JP 2

2 )− 4α1α2(P
2
1 + P 2

2 )H

= −2α2(2α1C1 + α2C2)H − α2
2C1J ≡ ω2J

′

[P ′1, P
′
2] = 0 [P ′1,K

′
2] = 0 [P ′2,K

′
1] = 0

(5.11)

that is,

α2
2 = −

ω2

C1
α1 = −α2C2

2C1
. (5.12)

This Galilean expansion which recovers the curvatureω2 of the space of (timelike) lines
S(2) gives rise to the Euclidean and Poincaré algebras, and involve the eigenvalue of both
Casimirs:

ω1 = 0

iso(3)
(0,+)

Euclidean
↑

iiso(2)
(0, 0)
Galilei
↓

iso(2, 1)
(0,−)

Poincaŕe

6. Concluding remarks

We have presented an expansion method which allows us to reverse all the contraction arrows
of the Lie algebras displayed in table 1. We would like to stress several points which turn out
to be relevant, and which may hint towards the still rather unknown extension to the expansion
procedure to either higher-dimensional situations or to higher-rank cases.

First, in theω1 expansions recovering the curvatureω1 of the spaceS(1) only the first
CasimirC1 appears, while both Casimirs participate in theω2 expansions making different
from zero the curvatureω2 of the space of linesS(2). As the ranks of the homogeneous spaces
S(1), S(2) are one and two, respectively, the results obtained seem to confirm the expected
relationship between the rank of the space and the number of Casimirs needed to perform the
expansion. This idea is in agreement with the known generalizations to arbitrary dimension
and variants of expansionsiso(p, q) → so(p, q) (associated withS(1)) [7, 8] which only
involve a single Casimir (the quadratic one) and are in a sense direct generalizations to any
higher dimension from theω1 expansions we discuss here.

Secondly, the role of extended algebras as the starting point for the expansion also needs
clarification. This role clearly depends on the type of expansion to be done. While the starting
point for theω1 expansion of Galilei algebra should be an extended Galilei algebra, this is
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not necessary for theω2 expansion of the same algebra. A complete and systematic study
of all the central extensions of the quasi-orthogonal algebras is available [14], and should be
the starting point for understanding the role these extensions play in the expansion process, a
problem which deserves further study.

However, the more interesting open question would be to know whether or not some
suitable ‘extension’ of the method we have proposed is still applicable for higher dimensions.
It is natural to suppose that whatever the correct method should be, it should rest again on
the Casimirs of the initial and the expanded algebra, and their dependence on the expansion
constantωa. Two facts will likely complicate the issue under discussion. First, further to the
quadratic Casimir, the additional ones are higher order (this is masked in theso(4) family
because the additional Casimir here is a perfect square and it can be considered as an extra
quadratic one). Secondly, the dependence of higher-order Casimirs on the expansion constant
ωa is also known in the general case [15] and this dependence is not only linear but also given
by a higher-order polynomial. The analysis of the next situation, the(3 + 1)-dimensional case,
would help to clarify the above questions.
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[14] de Azćarraga J A, Herranz F J, Pérez Bueno J C and Santander M 1998J. Phys. A: Math. Gen.311373
[15] Herranz F J and Santander M 1997J. Phys. A: Math. Gen.305411


